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Granular flow in a three-dimensional rotating container

T. Elperin* and A. Vikhansky†

The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering,
Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel

~Received 2 November 1999!

We considered a flow of a cohesionless granular material in a partially filled three-dimensional rotating
container. A model is suggested to describe a density of the surface flow and the profile of the free surface of
the granular material. It is shown that when the container has an ellipsoidal shape the obtained system of partial
differential equations can be reduced to a set of two ordinary differential equations.

PACS number~s!: 83.70.Fn, 45.05.1x, 05.60.2k
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Dynamics, mixing, and separation of granular materials
partially filled containers have been the subject of numer
experimental and theoretical investigations~see, e.g.,@1–6#!.
Although different aspects of granular dynamics in tw
dimensional drums were studied analytically, there were
attempts to describe a continuous granular flow in a thr
dimensional rotating container. Note, that while in a tw
dimensional slowly rotating drum the free surface of a gra
lar material has a nearly flat profile with a nearly const
angle of inclination, in a three-dimensional case the situa
changes drastically. The free surface evolves with time i
nontrivial manner, which depends on the shape of the dr
and also on the way the mixer is tumbled. In a tw
dimensional case, the axis of rotation is always directed n
mally to the drum while in a three-dimensional case it c
be, for example, wobbled, which causes an additional a
flow of granular material@2#. Thus, determining the granula
flow even in the most simple case of a constant angle
repose of granular material requires the solution of a sys
of partial differential equations of sandheap evolution@7,8#.
In the present work, we considered granular flow in an el
soidal mixer. Due to the simple analytical form of the co
tainer, the system of partial differential equations can be
duced to a system of two ordinary differential equations.

Let us consider an ellipsoidal drum with semiaxesA, B, C
~Fig. 1! that rotates with a constant angular velocityv
around they axis. At the initial momentt50 the container is
inclined with respect to a laboratory frame of reference
the anglesc ~angle of precession! andf ~angle of nutation!.
The drum is partially filled with a granular material with
constant bulk densityr and a constant angle of reposem. We
assume that the angular velocityv is sufficiently large to
cause continuous avalanches while the inertial forces
much smaller than the gravity and friction forces, e.
Froude numberFr 2[v2L/g!1, whereL is a characteristic
size of the drum. Thus the only characteristic time of t
process is 1/v, and for simplicity we set the angular velocit
to be 1.

The flow of the granular material in the drum can
described as follows. Particles rotate with the bulk of t
granular material and fall down into a thin cascading la
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when they reach the free surfacez5h(t,x,y), which has a
constant angle of inclination with respect to the horizonta

~¹h!25tan2~m!5g2. ~1!

Certainly, the latter assumption is an approximati
whereby Eq.~1! can be viewed as a zero-order term in t
expansion of the momentum conservation equation in Fro
number series~see, e.g.,@1#!. In the present study, we
adopted the model of sandpile evolution described in@7,8#.
Recently this model was used to explain the phenomeno
formation of transversal bands in slowly rotating cylindric
containers filled with binary granular mixtures@9#. The brief
description of this model is presented in the following.

Assume that the flow of the granular material occurs o
in a very thin boundary layer and it does not involve t
stationary bulk of the material. Denote the horizontal proje
tion of the mass flux density per unit area byrq̄(t,x,y).
Since inertial forces are small, the material flux is direct
toward the steepest descent of the free surface:

rq̄52kr¹W h, ~2!

where the flow ratek(t,x,y)>0 is the unknown scalar func
tion. Thus, the equation of mass balance for granular m
rial reads

FIG. 1. Schematic view of the flow of granular material in
rotating ellipsoidal drum and the coordinates system.
4446 ©2000 The American Physical Society
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]h

]t
1uW •¹W h2w5¹W •~k¹W h!, ~3!

whereuW 5(h,0) andw52x are horizontal and vertical com
ponents of the rotationally induced bulk velocity at the fr
surface.

A horizontal projection of an intersection of the free su
face with the walls of the container is an unknown clos
curveG on the~x, y! plane. Since the walls are impermeab
the boundary condition for Eq.~3! reads

qnuG50. ~4!

Equations~1!, ~3!, and~4! with respect to the unknown func
tions k(t,x,y) and h(t,x,y) provide a closed mathematica
formulation of the problem.

Note that the direct solution of the above equations for
arbitrary rotating container is a very complicated proble
Even in the more simple case of evolution of a sandp
growing on an arbitrary rigid support surface due to an
ternal source of granular material, the problem require
variational formulation, and only a numerical solution is fe
sible ~for details see@7,8#!. The only case that was invest
gated analytically is growth and interaction of conical pil
on a flat support surface@7,10–12#.

Fortunately, in an ellipsoidal drum the solution procedu
can be greatly simplified. Let us assume that the free sur
is flat. Then, the unit vector normal to the free surface can
written in spherical coordinatesa, m as follows

nW 5„sin~m!cos~a!,sin~m!sin~a!,cos~m!…,

wherea(t) is angle of orientation of the free surface wi
respect to thex axis. Thus, the equation of the free surfa
reads

h~ t,x,y!52g$x cos@a~ t !#1y sin@a~ t !#%1h0~ t !, ~5!

whereh0 is the height of the free surface at the origin of t
coordinates. The horizontal projection of the intersection
tween the free surface and the walls of the container is
ellipse

a~ t !~x2x0!212b~ t !~x2x0!~y2y0!1c~ t !~y2y0!251.

Substituting Eq.~5! into Eq. ~3!, we find that the left-hand
side of Eq.~3! is a linear function ofx andy. Therefore the
right-hand side of Eq.~3!, ¹W •(k¹W h), is also a linear function
of x and y. Taking into account the equation for the fre
surfaceh(t,x,y) in Eq. ~5!, we conclude that the flow rat
k(t,x,y) is a quadratic function ofx andy. In order to satisfy
the boundary condition~4! we must assume that the flow ra
k in Eq. ~2! has the following form:

k~ t,x,y!5k~ t !@12a~x2x0!2

22b~x2x0!~y2y0!2c~y2y0!2#. ~6!

Substituting Eqs.~5! and ~6! into Eq. ~3! and equating the
terms of the same order with respect tox andy we obtain

1:
dh0

dt
5g cos~a!h022gk@~ax01by0!cos~a!

1~bx01cy0!sin~a!#, ~7!
d
,
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x: g sin~a!
da

dt
1g2 cos2 ~a!11

52gk@a cos~a!1b sin~a!#,

y: 2g cos~a!
da

dt
1g2 cos~a!sin~a!

52gk@b cos~a!1c sin~a!#.

Combining the latter two equations yields

da

dt
52

sin~a!

g
12k@~a2c!sin~a!cos~a!

1bˆsin2~a!2cos2~a!‰#, ~8!

k5
1

2
~g1g21cos~a!@a cos2~a!

12b sin~a!cos~a!1c sin2~a!#21. ~9!

The parametersa, b, c, x0 , y0 can be evaluated as fol
lows. In the laboratory frame of reference the equation of
ellipsoid reads

f ~ t,x,y,z!5~x,y,z!T
•F~ t,c,f!•~x,y,z!51,

where the time-dependent matrix

F5~A2A1A3!TF0~A2A1A3!

and

A15S cos~c! sin~c! 0

2sin~c! cos~c! 0

0 0 1
D ,

A25S 0 0 1

cos~f! sin~f! 0

2sin~f! cos~f! 0
D ,

A35S cos~ t ! 0 2sin~ t !

0 1 0

sin~ t ! 0 cos~ t !
D ,

F05S A22 0 0

0 B22 0

0 0 C22
D .

Thus, the equations of the horizontal projection of the int
section between the free surface and the walls of the c
tainer read

a~x2x0!212b~x2x0!~y2y0!1c~y2y0!2

5 f „t,x,y,h~ t,x,y!…5 f̂ ~ t,x,y!.

Differentiating the latter equation yields

a5
1

2

]2 f̂

]x2 5„1,0,2g cos~a!…T•F•„1,0,2g cos~a!…,

~10!
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b5
1

2

]2 f̂

]x]y
5„1,0,2g cos~a!…T•F•„0,1,2g sin~a!…,

~11!

c5
1

2

]2 f̂

]x2 5„0,1,2g sin~a!…T•F•„0,1,2g sin~a!…,

~12!

~ax01by0!52
1

2

] f̂

]x
U

x50,y50

52„1,0,2g cos~a!…T•F•„0,0,h0…, ~13!

~bx01cy0!52
1

2

] f̂

]y
U

x50,y50

52„0,1,2g sin~a!…T•F•„0,0,h0…. ~14!

Thus, the ordinary differential equations~7! and~8! together
with relations~9!–~14! provide a solution of the system o
partial differential equations~1!–~4!. Since the solution of
the variational problem describing sandpile evolution
unique~for details see@13#!, the above solution is a gener
solution of the system of partial differential equations~1!–
~4! for an ellipsoidal mixer.

Note, that time dependence of the angle of orientation
the free surfacea is independent on its height at the coord
nate originh0 . Thus the evolution ofa is independent on the
filling level of the container. In Figs. 2 and 3, we showed t
results of the numerical solution of Eqs.~7! and ~8!. The
anglea reaches a steady state very rapidly, irrespectively
its initial value. It was found that for containers with arb
trary ~but nonequal! values of semiaxesA, B, C, which are
initially inclined with respect to the axis of rotation, th

FIG. 2. Time evolution of the angle of orientation of the fre
surfacea ~in degrees!: ~a! A51, B53, C53, c50, f50; ~b! A
51, B51, C53, c50, f50; ~c! A51, B51.6, C51.6, c
5p/4, f50; ~d! A51, B51.6, C51, c5p/4, f50; ~e! A51,
B52.4, C52.4, c5p/4, f50; ~e! A51, B52.4, C51, c5p/4,
f50.
f

o

anglea has a qualitatively similar behavior. The only param
eters, which determine the amplitude of the free-surface
tation, are the largest-to-smallest axes ratio and the angl
the container with respect to the rotation axis. Figure
shows contour plots of the projection of the flow rate on t
horizontal plane at different times. Since the free surface
granular material is a flat plane, the vectors of flux are p
allel.

It was noted in Refs.@2,6# that one of the disadvantages
the tumbling mixers is a poor material mixing in the axi
direction. When a container is rotated around its nonprinci
axis, the orientation of the free surface and, therefore,
granular flux direction change periodically, which causes
enhanced transport of the granular material along the axi
rotation. Thus, in order to enhance mixing, one can rotate
drum with respect to a nonprincipal axis. Note, that oth
possibilities to enhance mixing, e.g., periodical wobbling
the rotation axis, also can be described by the above m
after only small modifications.

In summary, we have analyzed granular flow in a thre
dimensional ellipsoidal rotating drum. It was found that i
clination of the mixer with respect to the plane of rotation
sufficient to enhance transport of the granular material in
axial direction. Note that the flow of granular material in th
ellipsoidal container can serve as a model of a granular fl
in a double-cone mixer, which is one of the most commo
used mixers used in industry@6#. The system of partial dif-
ferential equations for the free-surface profile and surf
flow rate is reduced to a set of two ordinary differential equ
tions.

The work of A.V. was supported by Levy Eshcol Fou
dation administered by Israel Ministry of Science.

FIG. 3. Contour plots of constant flow rate in a half-filled dru
for A51, B51.6, C51.6, c5p/4, f50 at different times. Zero
level corresponds to the boundary of a drum. The increment
tween adjacent contour lines is 0.1. Arrows indicate direction of
flow of the granular material that avalanches down the free surf
~a! t50, maximum flow rate50.98; ~b! t5p/3, maximum flow
rate51.02; ~c! t52p/3, maximum flow rate51.25; ~d! t5p, maxi-
mum flow rate50.98; ~e! t54p/3, maximum flow rate51.02; ~f!
t55p/3, maximum flow rate51.25.
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