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Granular flow in a three-dimensional rotating container
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The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering,
Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
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We considered a flow of a cohesionless granular material in a partially filled three-dimensional rotating
container. A model is suggested to describe a density of the surface flow and the profile of the free surface of
the granular material. It is shown that when the container has an ellipsoidal shape the obtained system of partial
differential equations can be reduced to a set of two ordinary differential equations.

PACS numbdps): 83.70.Fn, 45.05:x, 05.60—k

Dynamics, mixing, and separation of granular materials invhen they reach the free surfaze-h(t,x,y), which has a
partially filled containers have been the subject of numerousonstant angle of inclination with respect to the horizontal:
experimental and theoretical investigatidsse, e.g.;1—6]).
Although different aspects of granular dynamics in two-
dimensional drums were studied analytically, there were no Certainly, the latter assumption is an approximation

attempts to describe a continuous granular flow in a thréegnerehy Eq (1) can be viewed as a zero-order term in the

dimensional rotating container. Note, that while in a two-gynansion of the momentum conservation equation in Froude

dimensional slowly rotating drum the free surface of a granuy,ymper series(see, e.g.[1]). In the present study, we

lar material has a nearly flat profile with a nearly constantadopted the model of sandpile evolution describefi7ig).

angle of inclination, in a three-dimensional case the situatiolRecently this model was used to explain the phenomenon of

changes drastically. The free surface evolves with time in @ormation of transversal bands in slowly rotating cylindrical

nontrivial manner, which depends on the shape of the drungontainers filled with binary granular mixturg). The brief

and also on the way the mixer is tumbled. In a two-description of this model is presented in the following.

dimensional case, the axis of rotation is always directed nor- Assume that the flow of the granular material occurs only

mally to the drum while in a three-dimensional case it canin a very thin boundary layer and it does not involve the

be, for example, wobbled, which causes an additional axia$tationary bulk of the material. Denote the horizontal projec-

flow of granular material2]. Thus, determining the granular tion of the mass flux density per unit area py(t,X,y).

flow even in the most simple case of a constant angle ofince inertial forces are small, the material flux is directed

repose of granular material requires the solution of a systertbward the steepest descent of the free surface:

of partial differential equations of sandheap evoluti@r8]. .

In the present work, we considered granular flow in an ellip- pg=—kpVh, (2

soidal mixer. Due to the simple analytical form of the con- )

tainer, the system of partial differential equations can be rewhere the flow raté(t,x,y) =0 is the unknown scalar func-

duced to a system of two ordinary differential equations. ~tion. Thus, the equation of mass balance for granular mate-
Let us consider an ellipsoidal drum with semiaxe®, ¢ fial reads

(Fig. 1 that rotates with a constant angular velociby

around they axis. At the initial moment=0 the container is h O AZ

inclined with respect to a laboratory frame of reference by

the anglesy (angle of precessigrand ¢ (angle of nutatioh

The drum is partially filled with a granular material with a

constant bulk density and a constant angle of repogeWe

assume that the angular velocity is sufficiently large to

cause continuous avalanches while the inertial forces are

much smaller than the gravity and friction forces, e.g.,

Froude numbeFr?=w?L/g<1, whereL is a characteristic PANRY

size of the drum. Thus the only characteristic time of the \

process is 1, and for simplicity we set the angular velocity

to be 1.

(Vh)?=tarf(u)=»*. @

The flow of the granular material in the drum can be X :
described as follows. Particles rotate with the bulk of the ‘
granular material and fall down into a thin cascading layer W
xl
*Email address: elperin@menix.bgu.ac.il FIG. 1. Schematic view of the flow of granular material in a
TEmail address: vikhal@menix.bgu.ac.il rotating ellipsoidal drum and the coordinates system.
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dh

E+u Vh—w=V-(kVh), () X: ysm(a) +‘y 2cog (a)+1
wherel= (h,0) andw= —x are horizontal and vertical com- =2vyk[acoga)+bsin(a)],
ponents of the rotationally induced bulk velocity at the free

surface.

A horizontal projection of an intersection of the free sur-
face with the walls of the container is an unknown closed
curvel on the(x, y) plane. Since the walls are impermeable,
the boundary condition for Eq3) reads

y: —7COS{a) +y coq a)sin(a)

=2vyk[bcoga)+csin(a)].

Combining the latter two equations yields
Onlr=0. 4 da  sin(a)

— +2k[(a—c)sin(a)cog o
Equationg1), (3), and(4) with respect to the unknown func- dt 3 Jsin(a)cos e)

tions k(t,x,y) and h(t,x,y) provide a closed mathematical

formulation of the problem. + b{sir’(a)—cog(a)}], 8
Note that the direct solution of the above equations for an 1

arbitrary rotating container is a very complicated problem. k=5 (y+ y 'coga)[acos(a)

Even in the more simple case of evolution of a sandpile

growing on an arbitrary rigid support surface due to an ex- +2b sin(a)cog )+ c sirf(a)] L. 9

ternal source of granular material, the problem requires a
variational formulation, and only a numerical solution is fea- The parameters, b, c, Xo, Yo can be evaluated as fol-
sible (for details sed7,8]). The only case that was investi- lows. In the laboratory frame of reference the equation of the
gated analytically is growth and interaction of conical pilesellipsoid reads
on a flat support surfade¢’,10-13. _ T _

Fortunately, in an ellipsoidal drum the solution procedure f(t.x,y,2)=(x,y,2) - F(t,¢h,¢)-(x,y,2)=1,
can be greatly simplified. Let us assume that the free surfaggnere the time-dependent matrix
is flat. Then, the unit vector normal to the free surface can be

written in spherical coordinates, « as follows F=(A2A1A3) TFo(A2A1A3)
n=(sin(u)cog a),sin(u)sin(a),cog 1)), and
where a(t) is angle of orientation of the free surface with cogy) sin(y) O
respect to thex axis. Thus, the equation of the free surface A.=| —sin(y¢) cogy) O
reads ! ’
0 0 1
h(t,x,y)=—y{xcog a(t)]+ysima(t)]}+hy(t), (5
0 0 1
whereh, is the height of the free surface at the origin of the B ;
coordinates. The horizontal projection of the intersection be- A= co's(qS) sin(¢) 01,
tween the free surface and the walls of the container is an —sin(¢) cog¢) O
ellipse cogt) O —sm(t)
a(t)(x—Xg)*+2b(t) (X—Xo) (Y —Yo) +c(t) (Y= Yo)?=1. As=| O
Substituting Eq(5) into Eqg. (3), we find that the left-hand sin(t) O coit)
side of Eq.(3) is a linear function o andy. Therefore the _2
right-hand side of Eq3), V- (kVh), is also a linear function A
of x andy. Taking into account the equation for the free Fo=| O B*2 0
surfaceh(t,x,y) in Eq. (5), we conclude that the flow rate 0 0 C2

k(t,x,y) is a quadratic function of andy. In order to satisfy
the boundary conditiot4) we must assume that the flow rate Thus, the equations of the horizontal projection of the inter-

kin Eq. (2) has the following form: section between the free surface and the walls of the con-
k(tX,y) = k(D[ 1~ a(X—X,) tainer read
—2b(x—xo)(y—yo)—c(y—yo)z]. (6) a(X_X0)2+2b(X_X0)(y_YO)+C(y_yo)z
Substituting Egs(5) and (6) into Eq. (3) and equating the =Xy, h(txy))=1(txy).

terms of the same order with respectxtandy we obtain Differentiating the latter equation yields

dho
1: —=ycoda)hy—2 axy+byg)co 1 9%
dt ~ 7 s @ho—2yr{(axo* byo)cosa) a=3 -7=(1,0,~ ycog)"-F- (1,0~ ycoga)),

+(bxotcyg)sin(a)], (@) (10
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FIG. 3. Contour plots of constant flow rate in a half-filled drum

FIG. 2. Time evolution of the angle of orientation of the free (. A=1, B=1.6,C=1.6, y= w4, =0 at different times. Zero

surfacea (in degrees (@) A=1,B=3,C=3, =0, ¢=0; (b) A
=1, B=1, C=3, =0, ¢$=0; (c) A=1, B=1.6, C=1.6, ¢
=ml4, $=0; (d) A=1, B=1.6,C=1, y=ml4, $=0; (&) A=1,
B=2.4,C=24, y=xl4, $=0; () A=1,B=2.4,C=1, y=ml4,
¢=0.

1 . _
b—EaX&y—(l,O,—ycos(a)) -F- (0,1~ vysin(«)),
(11
1 5%f _ ; _
c=§ﬁ—Xz=(0,1,—ysm(a)) -F-(0,1~vysin(a)),
(12
(axc+byo) 1 of
ax Yo)=—7% —
070 2 x|\ o0
=—(1,0—ycoga))"-F-(0,0hy), (13
(bx 1 ov0) 1 of
Xot+CYo)=—% —
° ° 2 &y x=0y=0
=—(0,1—ysin(a))"-F-(0,0hy). (14

Thus, the ordinary differential equatioid) and(8) together

with relations(9)—(14) provide a solution of the system of

partial differential equation$l)—(4). Since the solution of

level corresponds to the boundary of a drum. The increment be-
tween adjacent contour lines is 0.1. Arrows indicate direction of the
flow of the granular material that avalanches down the free surface:
(@ t=0, maximum flow rate0.98; (b) t=#/3, maximum flow
rate=1.02; (c) t=2x/3, maximum flow rate=1.25; (d) t=7r, maxi-
mum flow rate=0.98; (e) t=4m/3, maximum flow rate-1.02; (f)
t=5/3, maximum flow rate1.25.

anglea has a qualitatively similar behavior. The only param-
eters, which determine the amplitude of the free-surface ro-
tation, are the largest-to-smallest axes ratio and the angle of
the container with respect to the rotation axis. Figure 3
shows contour plots of the projection of the flow rate on the
horizontal plane at different times. Since the free surface of
granular material is a flat plane, the vectors of flux are par-
allel.

It was noted in Refd.2,6] that one of the disadvantages of
the tumbling mixers is a poor material mixing in the axial
direction. When a container is rotated around its nonprincipal
axis, the orientation of the free surface and, therefore, the
granular flux direction change periodically, which causes an
enhanced transport of the granular material along the axis of
rotation. Thus, in order to enhance mixing, one can rotate the
drum with respect to a nonprincipal axis. Note, that other
possibilities to enhance mixing, e.g., periodical wobbling of
the rotation axis, also can be described by the above model
after only small modifications.

In summary, we have analyzed granular flow in a three-

the variational problem describing sandpile evolution isgimensional ellipsoidal rotating drum. It was found that in-

unique (for details se¢13]), the above solution is a general

solution of the system of partial differential equatioiis—
(4) for an ellipsoidal mixer.

clination of the mixer with respect to the plane of rotation is
sufficient to enhance transport of the granular material in the
axial direction. Note that the flow of granular material in the

Note, that time dependence of the angle of orientation ofjinspidal container can serve as a model of a granular flow

the free surfacer is independent on its height at the coordi-

in a double-cone mixer, which is one of the most commonly

r]qte originhy. Thus thelevolution ok is independent on the ,cad mixers used in industf$]. The system of partial dif-
filling level of the container. In Figs. 2 and 3, we showed thefgrential equations for the free-surface profile and surface

results of the numerical solution of Eq&Z) and (8). The

flow rate is reduced to a set of two ordinary differential equa-

anglea reaches a steady state very rapidly, irrespectively tqjons.

its initial value. It was found that for containers with arbi-

trary (but nonequal values of semiaxeé, B, C, which are

The work of A.V. was supported by Levy Eshcol Foun-

initially inclined with respect to the axis of rotation, the dation administered by Israel Ministry of Science.




PRE 62 BRIEF REPORTS 4449

[1]A. A. Boateng and P. V. Barr, Chem. Eng. Sé&i7, 4167 [7] L. Prigozhin, Chem. Eng. Scit8, 3647(1993; Phys. Rev. E

(1996. 49, 1161(1994.
[2] J. J. McCarthy, T. Shinbrot, G. Metcalfe, J. E. Wolf, and J. M. [8] T. Elperin and A. Vikhansky, Phys. Rev. &3, 4536(1996);
Ottino, AIChE J.42, 3351(1996. 55, 5785(1997.
[3] D. V. Khakhar, T. Shinbrot, J. J. McCarthy, and J. M. Ottino, [9] T. Elperin and A. Vikhansky, Phys. Rev. @, 1946(1999.
Phys. Fluids9, 31 (1997). [10] G. Aronsson, SIAMSaoc. Ind. Appl. Math. J. Appl. Math.22,
[4] T. Elperin and A. Vikhansky, Europhys. Le#t2, 619 (1998; 437 (1972.
43, 17 (1998; Chaos9, 910(1999. [11] G. Aronsson, L. C. Evans, and Y. Wu, J. Diff. EqdS81, 304
[5] D. V. Khakhar, J. J. McCarthy, J. F. Gilchrist, and J. M. Ot- (1996.
tino, Chaos9, 195 (1999. [12] L. C. Evans, M. Feldman, and R. F. Gariepy, J. Diff. Egns.
[6] A. W. Chester, J. A. Kowalski, M. E. Coles, E. L. Muegge, F. 137, 166(1997).

J. Muzzio, and D. Brone, Powder Technd02 85 (1999. [13] L. Prigozhin, European J. Appl. Matf, 225(1996.



